

Description

The LP3773D is a high performance AC/DC power supply controller for battery charger and adapter applications which integrated 850V high voltage BJT. The device uses Pulse Frequency Modulation (PFM) method to build discontinuous conduction mode (DCM) flyback power supplies.

The LP3773D provides accurate constant voltage, constant current (CV/CC) regulation without requiring opto-coupler and the secondary control circuitry. It also eliminates the need of loop compensation circuitry while maintaining good stability.

The LP3773D can achieve excellent regulation and high average efficiency which meets no-load consumption less than 75 mW.

The LP3773D provides many protections which include OVP, OTP and output short protection.

The LP3773D is available in SOP7.

Low Standby Power Off-Line PSR Driver

Features

- Suitable for 5V/1.5A application
- Valley voltage Turn on to advance efficiency
- 800V BJT integrated
- High precision CC/CV output
- $\leq 75 \text{ mW Standby power}$
- Proprietary cable voltage drop compensation
- FB Pin open-short Protection
- VCC Pin UVLO Protection
- Over temperature Protection
- Application
- Adapters/Chargers for Cell/cordless Phones, PDAs, MP3 and Other Portable Devices
- Upgrading the best choice linear power supply and RCC switching power supply
- Standby and Auxiliary Power Supplies

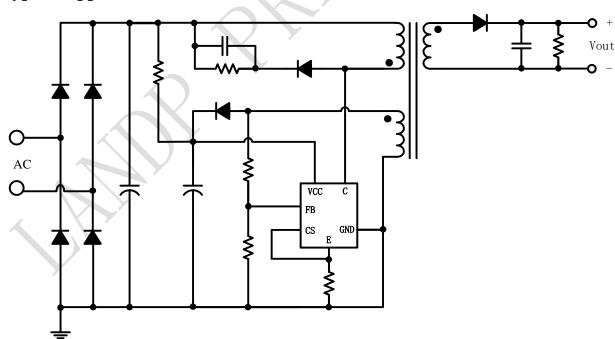
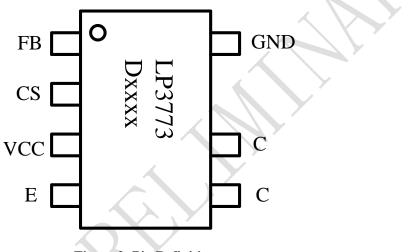


Figure 1: Typical Application Circuit

Typical Application



Ordering Information

Version	Package	Packing Form	Marking
LP3773D	SOP7	Tape 3,000 Piece/Roll	LP3773 Dxxxx
		5,000 T IEEE/ Koli	

Pin Definition

xxxx: IC Indetifier

Figure 2: Pin Definition

Terminal Description

Number	Definition	Description
1	FB	The input of the primary side feedback voltage
2	CS	The primary side current signal input which is used for cycle to cycle current limit
3	VCC	The power supply pin for the IC
4	Е	The emitter pin of the integrated BJT
5, 6	С	The collector pin of the integrated BJT
7	GND	The ground pin of the IC

Symbol	Description	Parameter Scope	Unit
VCC	The IC supply voltage	-0.3~30	V
CS	The current sensing input	-0.3~7	V
FB	The input pin of the PSR feedback voltage	-30~8.5	V
P _{DMAX}	The power dissipation(note2)	0.45	W
θ_{JA}	The thermal resistance from junction to ambient	120	°C/W
θ_{JC}	The thermal resistance from junction to case	70	°C/W
TJ	Operating junction temperature range	-40 to 150	°C
T _{STG}	The storage temperature range	-55 to 150	°C
	ESD (note3)	2	KV

Absolute Maximum Ratings (note 1)

Note 1: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. Under "recommended operating conditions" the device operation is assured, but some particular parameter may not be achieved. The electrical characteristics table defines the operation range of the device, the electrical characteristics is assured on DC and AC voltage by test program. For the parameters without minimum and maximum value in the EC table, the typical value defines the operation range, the accuracy is not guaranteed by spec.

Note 2: The maximum power dissipation decrease if temperature rise, it is decided by T_{JMAX} , θ_{JA} , and environment temperature (T_A) . The maximum power dissipation is the lower one between $P_{DMAX} = (T_{JMAX} - T_A)/\theta_{JA}$ and the number listed in the maximum table.

Note 3: Human Body mode, 100pF capacitor discharge on $1.5 K\Omega$ resistor

Recommended Operation Conditions

Version	Vin: 90VAC~265VAC, 50/60Hz
LP3773D	7.5W (5V/1500mA)

Electrical Characteristics (Notes 4, 5) (Unless otherwise specified, V_{CC}=15V and T_A=25 °C)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Supply Voltage	Section					
V _{CC_ST}	V _{CC} Start up Voltage	V _{CC} Rising	14	15.5	18	V
V _{CC_UVLO}	V _{CC} UVLO Voltage	V _{CC} Falling	3.5	4	4.5	V
I _{ST}	V _{CC} Start up Current	$V_{CC} = V_{CC-ST} - 1V$	0	0.2	0.6	uA
I _{cc}	V _{CC} Operating Current			500		uA
BJT Driver Sec	tion					
I _{SOURCE}	BJT Driving Current		30	35	40	mA
I _{SINK}	BJT Pull Down Current		450	500	550	mA
Current Sense S	Section					
V _{CS1}	The high load current threshold			500		mV
V _{CS2}	The light load current threshold			330		mV
T _{LEB}	The Leading Edge Blanking Time		Y	500		ns
T _{DELAY}	The turn off delay of the BJT			200		ns
Feedback Section)n		-			
R _{FB}	The input resistance of the FB	V _{FB} =4V	1	1.6	2	MΩ
V_{FB}	The reference voltage of FB	V Y	3.94	4	4.06	V
Output Cable C	Compensation Section		-			
V _{COMP_LINE}	The Output cable compensation parameter	V _{FB} =-10V, R _{LINE} =30K		120		mV
Protection Secti	on					
V_{FB_OVP}	FB over voltage reference		6.5	7.0	7.5	V
T _{ON_MAX}	Maximum turn on time			25		uS
T _{SD}	The over temp reference			150		°C
T _{HYS}	The hysteresis window of OTP			30		°C
Integrated BJT	Parameter		-	•	•	
V _{CBO}	BJT CB break down voltage	I _C =0.1mA	850			V
ICESAT	Collector limit current	I _B =40mA		0.8		А

Note 4: production testing of the chip is performed at 25 °C.

Note 5: the maximum and minimum parameters specified are guaranteed by test, the typical value are guaranteed by design, characterization and statistical analysis

Internal Block Diagram

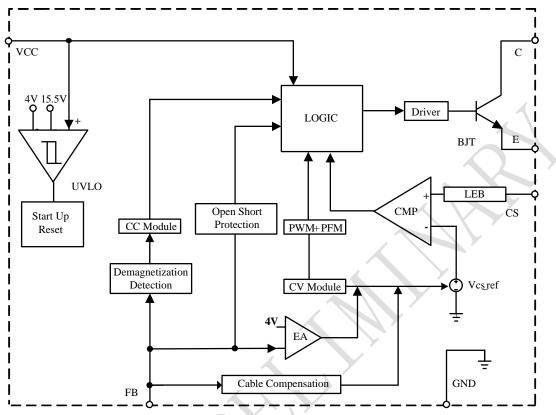


Figure 3: Internal Block Diagram

Application Information

The LP3773D is a high performance AC/DC power supply controller for battery charger and adapter applications which integrated 800V high voltage BJT. The device uses Pulse Frequency Modulation (PFM) method to build discontinuous conduction mode (DCM) flyback power supplies

Start Up

After system powered up, the VCC pin capacitor is charged up by the start up resistor. When the VCC pin voltage reaches the turn on threshold, the internal circuits start operating. Because of the very small startup current, the startup resistor can de designed very large to achieve low standby power. After the IC start up, the VCC voltage is supplied by the transformer auxiliary winding.

Peak Current Control

The IC detects the transformer primary side current cycle by cycle by the external Rcs resistor. When the voltage on the Rcs higher than the internal voltage reference 500mV, the IC will turn off the BJT

The heavy load current limit can be calculated by the following formula:

$$I_{\mathbf{P}_{\mathbf{P}_{\mathbf{K}}}} = \frac{500}{R_{cs}} (\mathbf{m}A)$$

The internal peak comparator involves a 500ns LEB time.

The output current can be calculated by the following formula:

$$I_{\scriptscriptstyle O} = \frac{1}{4} \times I_{\rm P_PK} \times \frac{N_{\scriptscriptstyle P}}{N_{\scriptscriptstyle S}}$$

For which the Np is the transformer primary winding turns, Ns is the transformer secondary winding turns and the Ip_pk is the peak current limit.

The CV Control and Output Voltage Setting

LP3773D achieves the constant voltage regulation by sampling the auxiliary winding voltage when the secondary side demagnetization. The output voltage can be calculated by the following formula:

$$Vo = \frac{4 * (R_{FBL} + R_{FBH})}{R_{FBL}} * \frac{Ns}{N_{aux}}$$

For which the R_{FBL} is the FB pull down resistor and the R_{FBH} is the FB pull up resistor and the N_{aux} is the transformer auxiliary winding turns.

Protection Function

LP3773D offers rich protection functions to improve the system reliability, including FB resistor open short protection, output short protection and over temperature protection.

Low Standby Power Off-Line PSR Driver

PCB Layout

The following rules should be followed in LP3773D PCB layout:

Bypass Capacitor

The bypass capacitor on V_{CC} pin should be as close as possible to the V_{CC} Pin and GND pin.

FB Pin

The FB divided resistor should be as close as possible to the FB Pin and as far as possible to the voltage noise point.

Ground Path

The power ground path for current sense should be short, and the power ground path should be separated from small signal ground path.

The Area of Power Loop


The area of main current loop should be as small as possible to reduce EMI radiation, such as the inductor, the power BJT, the output diode and the bus capacitor loop.

C Pin

To increase the copper area of C pin for better thermal dissipation. However too large copper area may compromise EMI performance.

Physical Dimensions

